جهت بررسی اثر کاربرد ذرات حامل انرژی و تعیین بهترین شرایط عملکرد، سه سطح مختلف دما و سه سرعت متفاوت هوای خشک کننده اعمال گردید. دامنه سرعت و دمای هوای خشک کننده در بستر محصول دانه های ذرت به ترتیب معمولاً بین ۰۰۵۶/۰ تا ۳۰۴/۰/m2.s m3 و ۵۰ تا ۷۰ درجه سلسیوس است
(Brooker et al, 1992، Shedd, 1953). لذا سه سطح نرخ جریان هوا در بازه های متعارف (۰۵/۰، ۱/۰ و ۱۵/۰ m/s) و سه دمای هوای خشک کننده در بازه های مذکور (۵۰، ۶۰ و ۷۰ درجه سلسیوس) انتخاب شدند.
ضریب همرفتی هوای گرم خشک کننده (h) به مشخصات دانه، سرعت عبور و ویسکوزیته سیال بستگی دارد (Holman, 2002). در این تحقیق جهت تعیین ضریب همرفتی هوای گرم خشک کننده از رابطه زیر استفاده گردید: (Brooker et al, 1992)
(۳-۱۱)
که در این رابطه Ca گرمای ویژه هوا، r شعاع معادل دانه، Ga نرخ جریان هوا (kg/hr.m2) و T دمای هوای خشک کننده برحسب درجه سلسیوس است. نرخ جریان هوا از حاصلضرب سرعت هوا در دانسیته میانگین آن در بازه دمایی مذکور بدست می آید. همچنین شعاع معادل دانه به طور متوسط برابر ۰۰۴/۰ متر در نظر گرفته شد. (Tarighi et al, 2011).
به این ترتیب با اعمال سه سطح سرعت هوای خشک کننده مذکور، سه ضریب همرفتی متفاوت هوای خشک کننده به ترتیب زیر به دست آمد: ۷۴/۱۸، ۶۱/۲۹ و ۷۰/۳۸ وات بر متر مربع درجه سلسیوس.
سطح رویه[۱۳۶] دانه را نیز می توان از تحقیقاتی که محققین قبلی بر روی مشخصات فیزیکی دانه ذرت انجام داده اند، بدست آورد. در نتیجه با داشتن h (ضریب همرفتی)، دمای هوای خشک کننده و A (سطح رویه دانه ذرت) می توان تغییرات درجه حرارت درون دانه را نسبت به گذشت زمان ارزیابی نمود.
طول دانه (۰۶/۱۲میلی متر) در مقایسه با ارتفاع (۷۷/۴میلی متر) و عرض آن (۱۱/۸ میلی متر) بزرگ تر است. از طرفی سطحی که در راستای طول وجود دارد (۷۷/۴*۱۱/۸)، در قیاس با دو سطح دیگر (۱۱/۸*۰۶/۱۲ و ۷۷/۴*۰۶/۱۲) خیلی کوچک تر است. به این ترتیب با تقریب نسبتاً خوبی می توان طرح را ساده تر نمود و انتقال حرارت را فقط در راستای ارتفاع و عرض دانه بررسی کرد (Chun et al, 2000). برای تعیین توزیع دمای درون دانه ذرت، باید معادله انتقال حرارت تعیین و سپس حل گردد. در این تحقیق از روش تفاضل محدود جهت تعیین توزیع دما درون دانه ذرت استفاده گردید. به این ترتیب دانه ذرت به ۲۴ گره مطابق شکل۳-۱۰ تقسیم شد. اما از آنجایی که این شکل در هر دو جهت محور افقی و عمودی دارای تقارن است، فقط کافی است توزیع دما را در گره های ۱، ۲، ۳، ۷، ۸، و ۹ به دست آورده شود.
( اینجا فقط تکه ای از متن فایل پایان نامه درج شده است. برای خرید متن کامل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )
از شکل ۳-۱۰ و با داشتن ارتفاع و عرض دانه dx و dy محاسبه شدند (dx=0.001622 وdy=0.00159 میلی متر). بنابراین با توجه به محدوده مقادیر ضریب همرفتی هوای گرم و داشتن dx وdy و دانستن میزان ضریب رسانایی دانه و ذرات بی اثر ، برای حفظ شرط پایداری مساله (بر اساس اعداد بایوت و فوریه) مقدار گام زمانی برابر ۱ ثانیه در نظر گرفته شد (Holman, 2002).
اعداد بایوت و فوریه به صورت زیر تعریف می شوند:
Bi=h(dx)/k و Fo= α(dt)/(dx)2 (۳-۱۲)
که در این روابط، Bi: عدد بایوت، dx: طول مشخصه(متر)، k: ضریب رسانایی دانه ذرت (وات بر متر درجه سلسیوس)، α: ضریب انتشار حرارتی (متر مربع بر درجه سلسیوس) و dt: گام زمانی(ثانیه) هستند. برای اطمینان از همگرایی روش های عددی در حالت دو بُعدی باید تمام انتخاب های پارامتر عدد فوریه از محدودیت زیر تبعیت کند: (Holman, 2002)
(۳-۱۳)
برای اطمینان از برقراری نامساوی بالا طبیعی است که جهت تعیین عدد بایوت باید dy (که کوچکتر از dx ) است، انتخاب شود. همچنین بزرگترین ضریب همرفتی را برای عدد بایوت در نظر گرفت. اگر طول گام زمانی مساوی ۱ ثانیه فرض شود، نامساوی بالا برقرار است. زیرا در این شرایط عدد فوریه مساوی ۰۲۷۴/۰ و عدد بایوت برابر ۳۶۲/۰ خواهند بود و نامساوی بالا برقرار است.
۳-۴-۱-۱- شرایط مرزی و اولیه در حالت عدم حضور ذرات بی اثر:
در این حالت فقط شرط همرفتی روی گره های مرزی دانه وجود دارد. همچنین شرط اولیه برای همه گره های موجود در دانه اعمال شد. طبق این شرط، دمای دانه در شروع آزمایش مساوی دمای محیط و برابر ۲۵ درجه سلسیوس در نظر گرفته شد.
در ادامه معادلات تعادل حرارتی برای هر کدام از گره های مذکور دانه در قسمت های زیر به دست آورده می شود: (Holman, 2002 و Incropera et al, 2005).
معادله تعادل حرارتی گره ۱:
(۳-۱۴)
که در این رابطه:
Tab: دما در گرهaام و زمانb ام. مثلاً T12 یعنی دمای گره ۱، بعد از دو مرحله گذشت زمان.
h: ضریب همرفتی هوای خشک کننده (W/m2.°C).
: دانسیته دانه ذرت(kg/m3).
cg:گرمای ویژه دانه ذرت (j/kg.°C).
kg: ضریب رسانایی دانه ذرت W/m.°C).
Ta: دمای هوای خشک کننده (˚C)
dt: گام زمانی که مساوی یک ثانیه فرض شد.
که در رابطه ۳-۱۴ با داشتن دمای اولیه دانه (برابر دمای محیط، ۲۵ درجه سلسیوس) در همه گره ها می توان با پیش روی به صورت گام های زمانی مشخص، دمای گره های مجاور را بدست آورد. مثلاً برای بدست آوردن دمای گره ۱ پس از گذشت یک گام زمانی از شروع آزمایش، از رابطه ۳-۱۴ استفاده می شود که در این شرایط در گام زمانی اول، دمای همه گره ها در سمت راست معادله مذکور برابر دمای محیط بوده و لذا اختلاف آنها نیز در این حالت صفر بوده و فقط جمله سوم که دربردارنده ضریب همرفتی هوای گرم است، موجب بالا رفتن دمای گره ۱ خواهد شد. بقیه معادلات بدست آمده در ادامه نیز با کمک همین روش حل در گام های زمانی مختلف حل شدند.
معادله تعادل حرارتی گره۲:
(۳-۱۵)
معادله تعادل حرارتی گره ۳:
(۳-۱۶)
معادله تعادل حرارتی گره۷:
(۳-۱۷)
معادله تعادل حرارتی گره ۸:
(۳-۱۸)
معادله تعادل حرارتی گره۹:
(۳-۱۹)
۳-۴-۲- بررسی انتقال حرارت به درون دانه ذرت زمانی که علاوه بر جریان هوای گرم، از ذرات حامل انرژی نیز استفاده شود
طبیعی است دمای دانه ذرت که در تماس با ذرات بی اثر حامل انرژی هستند، با سرعت بیشتری افزایش می یابد، این ذرات عموماً باید از جنسی انتخاب شوند که ظرفیت حرارتی (mc) آن پایین تر از ظرفیت حرارتی (mc) دانه ذرت و ضریب رسانایی (k) آن بالاتر از ضریب رسانایی دانه ذرت باشند. فولاد دارای ظرفیت گرمایی ویژه میانگین(cp) j/kg°C 465، دانسیته kg/m37833 ضریب رسانایی میانگین W/m°C 54 (Holman, 2002) ولی دانه ذرت دارای ظرفیت گرمایی ویژه میانگین j/kg°C 2035 و ضریب رسانایی(k) W/m°C 17/0 و دانسیته میانگین(ρ) kg/m31250 (در رطوبت ۲۵ درصد بر مبنای تر) می باشد ( زمردیان، ۱۳۸۷). به این ترتیب می توان ضریب انتشار حرارتی[۱۳۷] (α) هر کدام را از رابطه ۳-۲۰ محاسبه کرد: (Holman, 2002)
(۳-۲۰)
که ضریب انتشار حرارتی فولاد مساوی۵-۱۰×۴۸/۱و دانه ذرت برابر ۸-۱۰×۶۸/۶ متر مربع بر ثانیه بدست می آید. به دلیل تفاوت بسیار زیاد بین آنها می توان گفت که در صورت استفاده از ذرات بی اثر از جنس فولاد در بستر دانه ذرت، انتشار سریع حرارت از ذرات بی اثر به دانه ها موجب تسریع در فرایند خشک شدن دانه ها خواهد شد.
ترتیب قرار گیری دانه ها و ذرات بی اثر قابل پیش بینی نیستند ولی یکی از حالتهایی که ممکن است دانه های ذرت و ذرات بی اثر نسبت به همدیگر داشته باشند، حالت لایه ای است. لذا برای اینکه روند انتقال حرارت مدل سازی شود، ترتیب لایه ای فرض شد. ضمن اینکه این ترتیب قرارگیری که متضمن تماس دانه ها با ذرات بی اثر می باشد، از عمومیت طرح نمی کاهد. اما برای این که اثر استفاده از ذرات بی اثر واضح تر شود، این روند در حالت های مختلف لایه ای که ممکن است بین دانه و ذره بی اثر به وجود آید، بررسی شد. بنابراین تعداد ذرات بی اثر در تماس با دانه در سه حالت (چهارتایی، هشت تایی و دوازده تایی) مطابق شکل های ۳-۱۱ تا ۳-۱۳ تعیین گردید.
فرض می شود ذرات بی اثر دارای قطر ۵/۱ میلی متر بوده و محاسبات بر اساس روش تفاضل محدود برای دانه ذرت نوشته می شود. اما قبل از ورود به انجام محاسبات تعادل حرارتی برای دانه ذرت، لازم است درباره انتقال حرارت از هوای گرم به کره های فولادی (ذره بی اثر) بحث شود.
شکل۳-۱۱- ترتیب قرار گیری دانه و ذرات بی اثر در حالتی که از ۴ ذره بی اثر استفاده شود.
از آنجا که ذره حامل انرژی بسیار کوچک بوده و دارای رسانایی بالایی می باشد (۱/۰Bi[138]<) لذا می توان فرض کرد که درجه حرارت در همه نقاط آن یکنواخت بوده و فقط تابعی از زمان باشد (Holman, 2002).
۳-۴-۲-۱- شرایط مرزی و اولیه در حالتی که ۴ ذره بی اثر در اطراف هر دانه وجود داشته باشد:
در این حالت (شکل ۳-۱۱)، در گره هایی که ذرات بی اثر وجود دارند، از شرط مرزی دما و در سایر گره ها از شرط مرزی جریان همرفتی استفاده شد. البته برای ذره بی اثر فقط شرط مرزی جریان همرفتی به کار رفت. برای دانه و ذرات بی اثر شرط اولیه دمای محیط (°C 25) تعریف شد.
تعادل حرارتی برای ذره بی اثر فولادی: شکل تفاضل محدودی این معادله تعادل به صورت زیر نوشته می شود:
(۳-۲۱)